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Abstract. It has been universally assumed that the spectrum of the magnetohydrodynamics
equations, linearized around an equilibrium state, provides enough information on the short-
term evolution of the plasma to study certain stability properties. We show that this is true if
one takes into account viscous and resistive effects and the equilibrium satisfies certain regularity
conditions.

1. Introduction

One of the oldest and mathematically more settled theories within magnetohydrodynamics
is the linear stability theory of equilibrium states. The initial reason was practical: the best
situation for the high-density, high-temperature plasmas needed in nuclear fusion would be
a static one so that confinement would be guaranteed. To see for how long the plasma could
be maintained in that state, one needs to analyse how it responds to small perturbations.
It was confidently assumed that at least the initial evolution of the plasma would obey the
linearized magnetohydrodynamics (MHD) equations, and that the classical stability analysis
of the spectrum of this system would provide the necessary information (see, for example,
[1] and references therein). For further simplification, since viscosity and resistivity are
usually very low for those plasmas, they were taken as zero (the ideal MHD model: see
[2]). The resulting system, although still extremely complicated, gives a wealth of results
about several types of oscillation modes associated to different parts of the spectrum. The
point we wish to make is that this ideal linearized approach gives only partial information
on the real evolution of the plasma, even at an early stage; whereas the same analysis with
positive (no matter how small) viscosity and resistivity provides a much more adequate
view of both the linear and the nonlinear evolution, provided the equilibrium possesses a
certain degree of regularity. The proofs are not always elementary and require some rather
recent results on nonlinear evolution equations: for this reason we will restrict ourselves to
the incompressible case, which is more amenable to this setting. In this situation the MHD
equations are

∂u

∂t
+ u · ∇u− ν1u+∇p − (curlB ×B) = 0

∂B

∂t
− curl(u×B)− η1B = 0

divu = 0

divB = 0

(1)
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whereu is the fluid velocity,B the magnetic field,p the kinetic pressure,ν the (scalar)
viscosity andη the resistivity: the density and constants present in the equations are
normalized as 1. We have

curlB ×B = B · ∇B − 1
2∇B2

curl(u×B) = B · ∇u− u · ∇B. (2)

Initial and boundary conditions must be added. To avoid unnecessary complications, we
will deal only with two well-studied cases [3, 4]: when the plasma is bounded by a perfect
conductor, which means thatu, B ·n and curlB×n vanish at the boundary of the domain
�, and the space-periodic case, when all the magnitudes are space periodic in a certain box
� and the averages ofu andB vanish:

∫∫
�
u = ∫∫

�
B = 0. The total pressurep + 1

2B
2

may be eliminated by projecting on the space of null divergence fields, which kills all the
gradients: we are left with

∂u

∂t
+ u · ∇u−B · ∇B − ν1u = 0

∂B

∂t
+ u · ∇B −B · ∇u− η1B = 0

divu = 0

divB = 0.

(3)

If we denote byw the six-dimensional vectorw = (u;B), and byC(w1,w2) the vector

(u1 · ∇u2−B1 · ∇B2;u1 · ∇B2−B1 · ∇u2)

the system may be summarized as

∂w

∂t
+ Aw + C(w,w) = 0

w(0) = w0 (4)

whereA is the elliptic operator(−ν1;−η1). The main spaces are, in the perfect conductor
case,

H = {w = (u;B) ∈ L2(�)6 : divu = divB = 0,u · n|∂� = B · n|∂� = 0}
V = {w = (u;B) ∈ H 1

0 (�)
3×H 1(�)3 : divu = divB = 0,B · n|∂� = 0}. (5)

In the periodic case,

H =
{
w = (u;B) ∈ L2(�)6 : w periodic, divu = divB = 0,

∫ ∫
�

u =
∫ ∫

�

B = 0
}

V = H ∩H 1(�)6.

(6)

C takesV × V into the dual spaceV ′, satisfying

(C(w1,w2),w3) = −(C(w1,w3),w2) (7)

which implies

(C(w1,w2),w2) = 0. (8)

TheL2-norm inH will be denoted by| |, and theH 1-norm inV by ‖ ‖.
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2. Ideal MHD equilibria

Take in the MHD systemη = ν = 0, and consider a stationary solution of it (∂/∂t = 0). The
very existence of this solution is problematic: for configurations with a certain degree of
symmetry, in which the magnitudes depend on less than the three space variable, solutions
may be found. In particular, axisymmetric equilibria satisfy the well known Grad–Shafranov
equation [1]. Grad even suggested that non-pathological totally asymmetric solutions could
not exist [5], although later weak asymmetric equilibria (with discontinuities in the field)
were found [6, 7]. Anyway, assume that we have an ideal stationary solutionw0. The ideal
MHD equations linearized aroundw0 are

∂v

∂t
+ v · ∇u+ u · ∇v +∇p1− (curlB × b)− (curlb×B) = 0

∂b

∂t
− curl(u× b)− curl(v ×B) = 0

divv = 0

div b = 0

(9)

where the stationary solution is(u,B) and the perturbed quantities arev (velocity), b
(field) andp1 (pressure). In addition they must satisfy the same boundary conditions as the
original magnitudes. Let us write this system as

∂w

∂t
= Lw. (10)

To study its solution, the first thing to ask is whetherL is the infinitesimal generator of a
semigroup. To prove that this is really so is not simple at all: a rigorous proof, using the
theorem of Hille–Yosida forL + λ with several natural definitions of the domainD(L) is
shown in [8]. One of those domains is formed by solenoidal functions with the boundary
conditionsv ·n|∂� = 0, b ·n|∂� = 0. It is also well known [1] that for a static equilibrium
(u = 0), the system above may be written as a second-order equation

∂2ξ

∂t2
= Fξ (11)

where ξ is the fluid displacement andF is a symmetric operator for several boundary
conditions. Apparently this solves many problems related to semigroup existence and
spectral theorems, but still one needs to study the existence of self-adjoint extensions of
F + λ for someλ [8], and worse, the spectrum ofF includes all theω2 : ω ∈ σ(L), but
not vice versa [5]. Thus its study may provide only necessary conditions for stability, such
as the negativity ofF ((Fξ, ξ) 6 0 for admissibleξ).

Returning to the original first-order equation, even ifL generates a semigroupS, we
only have (see, for example, [9])

et σ (L) ⊂ σ(S(t)) (12)

so that ifσ(L) ∩ {Rez > 0} 6= ∅, there exist exponentially growing modes and therefore
instability, butσ(L) ⊂ {Rez 6 0} does not guarantee any kind of stability. WhenL or
L + λ is self-adjoint the spectral theorem gives the identity of these sets and relates the
norm of S(t) to the location of the spectrum, but this is not the case.

We see that the ideal spectrum simply does not give enough information to foresee even
the linear evolution of the plasma; this does not encourage any effort to compare the linear
and the nonlinear behaviour. Things are different when a positive viscosity and resistivity
are introduced. Although these may be extremely small, the spectrum is essentially different
and much more meaningful.
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3. Resistive MHD equilibria

As mentioned previously, the incompressible MHD system may be written as
∂w

∂t
+ Aw + C(w,w) = 0

w(0) = w0

(13)

so that any equilibrium statew0 must satisfy

Aw0+ C(w0,w0) = 0 (14)

which is a nonlinear elliptic system; theorems proving existence and regularity of solutions
are available (see, for example, [10, 11]). The linearized equations aroundw0 are

∂w

∂t
+ Aw + C(w,w0)+ C(w0,w) = 0

w(0) = w1

(15)

which we will write, as before, by
∂w

∂t
= Lw

w(0) = w1.

(16)

Lemma 1. If w0 ∈ L∞(�), there exists positivek andα such that

((−L+ k)w,w) > α‖w‖2 (17)

for all w ∈ V .

Proof. Since (C(w0,w),w) = 0, (C(w,w),w0) = −(C(w,w0),w), it is enough to
analyse summands of the form(f · ∇g)h0, wheref andg are part ofw, h0 part ofw0.
We have

|(f · ∇g)h0| 6 |f | ‖g‖ ‖h0‖∞ 6 |w| ‖w‖ ‖w0‖∞. (18)

Let δ = inf{ν, η}. If we takek such that 2‖w0‖∞ 6
√
kδ,

δ‖w‖2− |w| ‖w‖ ‖w0‖∞ + k|w|2 > α‖w‖2 (19)

for someα > 0. Since(Aw,w) > δ‖w‖2, the result is proved. �
Notice that since� is a three-dimensional domain, ifs > 3

2, Hs(�) ⊂ C(�̄). Thus if
w0 ∈ Hs(�), the result is true.

Proposition 2. There exists a unique solution of system (15). Moreover, the mapping
w1→ w(t) is continuous fromH to H 2(�)6.

Proof. Since−L + k is a linear elliptic accretive operator, there exists a unique solution
of

∂w

∂t
= Lw − kw

w(0) = w1

(20)

andw1 → w(t) takesH to D(A) ⊂ H 2(�)6 (see, for example, [4]). The solution to our
system is this one multiplied by ekt , which satisfies the same regularity property for a fixed
t . �

Let S(t) be the semigroup generated by (15).
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Proposition 3.

σ(S(t)) = etσ (L) ∪ {0}. (21)

Proof. In addition to the general inclusion (12), we also have [9]

σp(S(t)) ⊂ etσp(L) ∪ {0} (22)

where σp denotes the point spectrum. Since the inclusionH 2(�)6 ⊂ H (and even
H 2(�)6 ⊂ V ) are compact,S(t) is a compact operator, so the whole of its spectrum
except perhaps zero, is included inσp(S(t)). Zero always belongs toσ(S(t)). This value
could even be taken as the exponential of the value−∞, which is a limit spectral point of
the elliptic operatorL. Notice also that the spectrum ofL is formed only by eigenvalues.

�
Hence the spectrum ofS(t) is indeed determined byσ(L): any exponentially growing

solution must correspond to an eigenvalue ofL, and vice versa. This is still not enough:
what we need is to know the behaviour ofS(t)w1 for any initial conditionw1 near the
equilibriumw0, not just for the eigenfunctions. IfS(t) is self-adjoint, this follows from the
spectral decomposition theorem. Since it is not, it remains to be seen whether its spectrum
determines somewhat the size of the solutions as they evolve in time. This is true because the
operatorsS(t) are compact and hence the semigroup isalmost-stable[12, 13]. This means
the following: letρ > 0 be a regular radius, i.e. a radius such that there is no eigenvalue
of S(1) with modulusρ. Let σ+(ρ) = σ(S(1)) ∩ {|z| > ρ}, σ−(ρ) = σ(S(1)) ∩ {|z| < ρ},
H+(ρ) the (finite-dimensional) invariant subspace ofS(1) associated toσ+(ρ), H−(ρ) the
invariant subspace corresponding toσ−(ρ). We haveH = H+(ρ) ⊕ H−(ρ), although the
decomposition does not need to be orthogonal. Then there exist norms| |+ in H+(ρ), | |−
in H−(ρ) such that the norm| | in H is equivalent to sup{| |+, | |−}, in the sense that if
we denote byP± the projection intoH±(ρ), the norms|w| and sup{|P+w|+, |P−w|−} are
equivalent. Also the restrictions ofS(t) to the invariant subspacesH±(ρ) satisfy

‖S(t)|H−(ρ)‖− 6 (ρ − ε)t (23)∥∥(S(t)|H+(ρ))−1
∥∥
+ 6 (ρ + ε)−t (24)

for someε > 0.
Hence the states withinH−(ρ) tend tow0 at least as rapidly as(ρ − ε)t : thus for any

initial conditionw1,

|S(t)w1− P+(S(t)w1)| = |P−(S(t)w1)| 6 C(ρ − ε)t |w1| (25)

for some fixed constantC. The trajectoryP+S(t)w1 = S(t)P+w1 lies within the finite-
dimensional spaceH+(ρ). Therefore any trajectory may be approximated by one associated
to eigenvalues larger thanρ, i.e. eigenvalues ofL whose real part is larger than logρ,
which hence determine the stability of the system. If 1 is such a radius andH+(1) = 0, the
equilibrium is linearly stable: all the nearby trajectories tend to fall intow0. If H+(1) 6= 0,
the equilibrium is unstable. The doubtful case occurs when 1 is not a regular radius, i.e.
when there are eigenvalues ofL of real part 0. Apparently this is unfortunate, because
several portions of the ideal spectrum are purely imaginary in many important cases. Let
us remember, however, that there is no guarantee that the spectrum ofL for nonideal
conditions must approach the ideal spectrum when viscosity and resistivity tend to zero.
This is a singular perturbation problem, for which there are not general theorems: indeed,
there are examples [14] showing that (i) it may happen that a regular radius for the ideal
spectrum is not so for the resistive spectrum, no matter how smallν andη; and (ii) ρ (in
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particular 1) may be a regular radius for every resistive spectrum, and nevertheless even the
whole ideal spectrum may be contained within{Re z = log ρ}. Hence this ideal spectrum
provides few clues on the resistive evolution.

4. Nonlinear evolution near equilibria

We now reach the real problem: obviously we cannot expect for the solutions of the
linearized system to mimic the real ones for long periods of time, but is it true that they do
resemble them over the short term? This is by no means obvious. We will prove that such
similarity exists if (i)w0 ∈ L∞(�)∩ V and (ii) the initial conditions to be studied, besides
being nearw0 in theH -norm, belong toV (although they do not need to approachw0 in
theV -norm).

Let us begin by remembering some facts about the MHD incompressible equations [4].
In dimension 3, there is so far no proof of existence and uniqueness; there exist weak
bounded solutions, and for any initial conditionw1 ∈ V , there exists a finite timeT1

depending only on‖w1‖ such that a unique solutionw of the problem exists fort ∈ [0, T1];
also

w ∈ L2
(
[0, T1], H 2(�)6

) ∩ C([0, T1], V ). (26)

If we take‖w1‖ 6 R, T1(R) may be taken such that‖w(t)‖ 6 2(1+ R), ∀t ∈ [0, T1(R)].
Thus, although in principle any solution may blow up or bifurcate, it remains smooth
at least for a fixed time depending only on‖w(0)‖. If we defineDρ(T ) as the set of
initial conditionsw1 ∈ V such that the solutionw(t) exists at least within [0, T ] and
‖w(t)‖ 6 ρ ∀t ∈ [0, T ], it follows that B̄V (0, R) ⊂ Dρ(T1(R)), with ρ = 2(1+ R).

Theorem 4. Letw0 be an equilibrium of the MHD equations, and assumew0 ∈ L∞(�) ∩
V . Let w(t) denote the solution of the nonlinear system with initial conditionw0 + z,
wherez ∈ V and‖w0 + z‖ 6 R; let w∗(t) be the solution of the equations of the MHD
linearized atw0 with initial conditionw∗(0) = z. Then

w(t)−w0 = w∗(t)+ E(t) z (27)

where|E(t) z|/|z| → 0 when|z| → 0, uniformly in t ∈ [0, T1(R)].

Proof. Let T (t)w1 denote the solution of the nonlinear problem with initial condition
w1. T (t) is a semigroup up to the timeT1(R) for all w1 ∈ B̄V (0, R). ThenDρ(T1(R)) is
open inV , andT (t) Fréchet differentiable at every point of it, with theH -norm (see [15]).
Moreover its differential at a pointw1, T ′(t)(w1), satisfies that its action onz ∈ V is the
value taken at timet by the solution of the linearized equation

∂z

∂t
+ Az + C(z,w1)+ C(w1, z) = 0

z(0) = z. (28)

By the definition of Fŕechet differentiability, this means

T (t)(w1+ z) = T (t)(w1)+ T ′(t)(w1) z + E(t) z (29)

and |E(t) z|/|z| → 0 when|z| → 0, uniformly for t ∈ [0, T1(R)].
If we setw1 = w0, T (t)w0 = w0 for all t and T ′(t)(w0) coincides with the linear

semigroupS(t) of the previous section, i.e.S(t) z = w∗(t), which proves the theorem.�
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Corollary 5. Let ρ be a regular radius of the linearized equation. For any initial condition
w1 ∈ V such that‖w1‖ 6 R, there exists a trajectory of the linearized systemw∗(t),
contained in the finite-dimensional spaceH+(ρ), such that

|w(t)−w∗(t)| 6 Cρt + |E(t)(w1−w0)| (30)

where|E(t)(w1−w0)|/|w1−w0| → 0 as|w1−w0| → 0, uniformly in t ∈ [0, T1(R)].

Proof. It is an obvious consequence of theorem 4 and proposition 3. Hence nonlinear
stability is determined byw∗(t), i.e. by the linear modes associated to spectral points larger
thanρ, at least up toT1(R). �

This result may be refined in a number of ways: the trajectoryw∗(t) may be changed
by another one staying within a finite-dimensional invariant manifold, tangent toH+(ρ),
instead of within the linear space itself, and the error termE(t) omitted; this adds little,
however, to the approximation itself. Also a related theorem may be proved inHs(�), for
s > 3

2. [13, 16]. In this case‖E(t) z‖s/‖z‖s → 0 when‖z‖s → 0, which is a stronger
approximation; it is attained, however, at the prize that the initial condition must be near
w0 not only in theH -norm, i.e. in energy, but in the finer norm ofHs(�). Energy is a
more natural way of measuring perturbation sizes.

As a conclusion, the spectrum of the viscous, resistive linearized MHD equations at an
equilibrium provides fairly satisfactory information on the initial evolution of the system
and therefore of its short-term stability. This cannot be said of ideal MHD, where even the
linear evolution is much less controlled by the spectrum.
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